

PIANO ANNUALE DELLE ATTIVITÀ - A.S. 2023-2024

Disciplina: Elettrotecnica ed Elettronica

PERIODO DIDATTICO: secondo Classe: 3AUS

Docente: prof. Antonio Formichella Co-Docente: prof. Marco Raffaelli

STRATEGIE DIDATTICHE

Metodologie didattiche (lezioni frontali, didattica laboratoriale, problem solving,...) e strumenti utilizzati

La disciplina in oggetto, prevede prove di verifica orale e di laboratorio. Come prospettato nel piano di lavoro sotto riportato, gli argomenti trattati nelle lezioni teoriche dovranno avere un conseguente riscontro laboratoriale, sperimentale e di simulazione, finalizzato ad offrire agli alunni una concreta e ulteriore assimilazione degli argomenti trattati. Ne discende che il laboratorio diventa parte integrante delle lezioni e la valutazione del lavoro svolto dagli studenti sarà effettuata in accordo tra docente e co-docente.

PIANO DISCIPLINARE PER L'ORGANIZZAZIONE DELLE ATTIVITÀ DI DIDATTICA DIGITALE INTEGRATA

La Didattica Digitale Integrata è prevista con i criteri definiti in Collegio Docenti, mentre gli orari sono concordati in Consiglio di Classe. Le ore sincrone prevederebbero lezioni video in diretta tramite presentazioni in videocall tramite la piattaforma Google Meet o tramite scrittura in tempo reale. Le ore sincrone di laboratorio vedranno l'utilizzo di software per la simulazione di vari sistemi, guidando gli studenti, che seguiranno ed eseguiranno le istruzioni contemporaneamente, a schermo condiviso. Le eventuali ore asincrone di teoria prevederebbero invece, esercizi o lavori di approfondimento, mentre quelle di laboratorio prevederebbero l'utilizzo di software per la simulazione dei sistemi e stesura delle relazioni. Si utilizzeranno anche metodi di insegnamento flipped, con preparazione del materiale da parte degli studenti precedentemente alla lezione sincrona, a seconda della tipologia di argomento. Le valutazioni saranno fatte tramite voto orale con domande rapide e tramite test a risposta chiusa o aperta online, e infine col voto delle relazioni dei laboratori simulati.

MATERIALE DIDATTICO

Libro di testo

Casa Editrice: HOEPLI Titolo: Elettronica ed elettrotecnica. Nuova Edizione Volume 1 Autori: Gaetano Conte, Matteo Ceserani, Emanuele Impallomeni

Si utilizzeranno inoltre: pagine web collaborative, slides del docente, strumentazione di laboratorio, simulatori circuitali.

CRITERI E STRUMENTI DI VALUTAZIONE

Nel valutare l'apprendimento degli alunni si procederà ad almeno una verifica sommativa per modulo, preferendo la verifica scritta, strutturata e non. La verifica orale verrà impostata come un colloquio in grado di coinvolgere l'alunno, stimolando la dialettica, la riflessione e l'analisi delle tematiche affrontate. Si effettueranno altresì delle valutazioni di tipo pratico per l'attività di laboratorio, valutando sulla base dei concreti risultati ottenuti nelle varie attività e sulle relazioni che, in alcuni casi, verranno richieste dal docente. Nella valutazione saranno adottati i criteri determinati dal Consiglio di Classe, e per questa disciplina verranno valutate le conoscenze acquisite, la comprensione dei concetti principali, l'applicazione di tali concetti in problemi di analisi e di sintesi, la capacità di rielaborare gli argomenti affrontati e di esporli con precisione e chiarezza. Si terrà altresì conto dell'impegno e della frequenza dimostrata nel corso dell'anno.

ORGANIZZAZIONE MODULARE (UdA) DELLA PROGRAMMAZIONE RELATIVA AL PERIODO DIDATTICO

MODULI	PERIODO	CONOSCENZE	ABILITÀ	COMPETENZE	OBIETTIVI MINIMI
Modulo 1	2.1	Considere elettrishe bineli unti lineari in	Comprendere, risolvere e	Comon intermediane il	Companying large
Modulo 1	2.1	Grandezze elettriche, bipoli,reti lineari in corrente continua Studio delle grandezze	dimensionare le grandezze fisiche	Saper interpretare il significato della principali	Saper risolvere completamente una rete
		elettriche, Bipoli elettrici e loro collegamenti,	fondamentali (V,I,R)	grandezze elettriche.	resistiva lineare di media
		Metodi di risoluzione delle reti lineari.	Saper analizzare, classificare e	Essere in grado di eseguire	complessità analiticamente e
		Misure elettriche: aspetti generalie misura	determinare le caratteristiche di un	la misura delle principali	empiricamente con gli
		delle grandezze fondamentali	bipolo elettrico.	grandezze elettriche e la	strumenti di laboratorio
		Laboratorio:	Saper risolvere un circuito con una	verifica di funzionamento di	Su unitenti di laboratorio
		Misura della resistenza con il metodovolt-	sola fonte di alimentazione	una rete sia con	
		amperometrico, Misura della potenza con il	Sola fonte di annientazione	strumentazione reale sia	
		metodovolt-amperometrico, Regolazione		mediante simulazione	
		reostatica della corrente, Regolazione		inediante sinidiazione	
		potenziometricadella tensione, Verifica del			
		principio di sovrapposizione degli effetti,			
		Determinazione del generatoreequivalente			
Modulo 2	2.2	Circuiti elettrici capacitivi e induttivi	comprensione e risoluzione di Reti	conoscenza dei Fenomeni	Saper risolvere
Modulo 2		Introduzione all'elettromagnetismo,circuiti	capacitive a regime costante;	transitori nei circuiti	completamente sia una rete
		induttivi, Introduzione alla corrente alternata;	conoscenza delle Grandezze	capacitivi;	resistiva capacitiva che
		Concetti introduttivi, Circuiti in corrente	magnetiche e leggi fondamentali	conoscenza dei Fenomeni	rsitiva induttiva di media
		alternata monofase, Misure elettriche: misure	legate al magnetismo; conoscenza dei	transitori nei circuiti	complessità analiticamente
		in corrente alternata	Circuiti in corrente alternata	induttivi;	e empiricamente con gli
		Laboratorio:	monofase;	capacità di operare Misure	strumenti di laboratorio.
		Rilievo sperimentale del transitorio di carica	•	elettriche: misure in	Misure con alimnetazione
		e scarica di un condensatore Simulazione di		correntealternata;	sinusoidale su un circuito
		un circuito RCalimentato con onda quadra		,	RC serie, RL parallelo,
		Simulazione del circuito RLalimentato con			RLC;
		onda quadra; Seconda simulazione del			Capacità di Misura della
		circuito RLalimentato con onda quadra;			potenza e dell'impedenza in
		Misura della potenza e dell'impedenzain			corrente alternata
		corrente alternata monofase, Simulazione di			monofase;
		un circuito RC serie con alimentazione			
		sinusoidale, Simulazione di un circuito RL			
		parallelocon alimentazione sinusoidale,			

		Simulazione di un circuito RLC serie con alimentazione sinusoidali			
Modulo 3	2.3	Elettronica Digitale L'elettronica digitale a confronto con elettronica analogica. La comunicazione tra dispositivi analogici e digitali Circuiti logici combinatori laboratorio: Verifica statica di porta logica TTL-LS Caratteristica di I/O di porta logica Composizione e visualizzazionedi un numero binario con 8 bit Leggi di identità e annullamento,concetto di abilitazione Legge dei complementi, alea statica Teorema di De Morgan Circuito generatore di funzionemediante MUX 1 of 8 Decoder/Demultiplexer digitale Comparatore digitale Decoder per display 7 segmenti	Comprendere i campi di applicazione dell'elettronica digitale, le Variabili binarie, operatori logici e le porte logiche. conoscenza Leggi di composizione di AND-OR-NOT, Realizzazione di funzioni booleane, Riduzione a forme algebricheminime per le funzioni booleane,	conoscenza dei Sistemi di numerazione e della Conversione da decimalea esadecimale/binario. Conoscenza della strumentazione di base, Uso della bread board, dei codici a colori dei resistori, Utilizzazione dei diodi LED e resistenze del tester, dell'alimentatore stabilizzato, generatore di segnali e dell'oscilloscopio. Conoscenza dei Circuiti combinatori integrati di base,	Organizzazione e realizzazione di una verifica pratica di laboratorio e tramite software di simulazione.
Modulo 4	2.4	I Circuiti logici sequenziali Latch e Flip-Flop, elemento di memoria i tipi di lacth (srl,dl) ed i tipi di flipflop (d,jk,t) Applicazioni dei circuiti logici alla genera- zione di segnali impulsivi In Laboratorio: Verifica di latch SR Circuito antirimbalzo Flip-flop JK Monostabile con latch Astabile con porte CMOS Contatore decimale asincrono	Comprendere le problematiche lega- te alla memorizzazione delle infor- mazioni utilizzandoi Contatori e shift register integrati	Saper distinguere gli ele- menti circuitali che con- traddistinguono le logiche di memorizzazione e le lo- giche combinatorie	Implementare circuiti com- binatori e memorizzare lo stato delle uscite di una de- terminata logica. Con cir- cuito su bradboard e simu- lazione a mezzo software

Trento, 22/09/2023

IL DOCENTE: prof. Antonio Formichella